SchemDraw is a python package for producing high-quality electrical circuit schematic diagrams. Typical usage:

import SchemDraw as schem
import SchemDraw.elements as e
d = schem.Drawing()
V1 = d.add(e.SOURCE_V, label='10V')
d.add(e.RES, d='right', label='100K$\Omega$')
d.add(e.CAP, d='down', botlabel='0.1$\mu$F')
d.add(e.LINE, to=V1.start)


A gallery of circuits is here, in addition to the examples on this page.

Usage in iPython

Using an IPython Notebook in inline mode is recommended for the easy creation of these diagrams. Images will look best when saved in a vector format, such as svg, eps, or pdf. Place this code at the very beginning of the notebook, before importing SchemDraw:

%matplotlib inline
%config InlineBackend.figure_format = 'svg'


SchemDraw can be run under Python 2 or Python 3, and requires the numpy and matplotlib packages.

SchemDraw can be installed from pip using

pip install SchemDraw

or directly by downloading the package and running

python install


Source code git repository:

This documentation available online:

If you find this package useful, or use it in any published work, I would love to hear about it! Email any comments, questions, or suggestions to

Basic Usage

SchemDraw works on the principle of creating a drawing object, and then adding elements to it. Common elements are defined in SchemDraw.elements, and additional elements can easily be created (see Defining New Elements.

Start by setting up a new drawing:

import SchemDraw as schem
import SchemDraw.elements as e
d = schem.Drawing()

Then use the add() method to add elements:

d.add(e.RES, label='100$\Omega$')
d.add(e.CAP, label='0.1$\mu$F')

And finish by calling draw(), and save() for a image file:


Element properties

The add() method takes a number of arguments to define the element position. The first argument is the element definition dictionary.

Position and direction

The position of each element can be specified in a number of ways. If no position is given, it will start at the current drawing position, typically where the previous element ends, and in the current drawing direction.

Otherwise, position can be specified using some combination of the keyword arguments:

    xy     : [x,y] starting coordiante.
             Element drawn in current direction and default length.
    endpts : [[x1,y1], [x2,y2]] start and end coordinates
    to     : [x,y] end coordinate
    tox    : x-value of end coordinate (y-value same as start)
    toy    : y-value of end coordinate (x-value same as start)
    l      : total length of element
    zoom   : zoom/magnification for element (default=1)
    anchor : 'xy' argument refers to this position within the element.
             For example, an opamp can be anchored to 'in1', 'in2', or 'out'

'to', 'tox', 'toy', 'l' can be used with 'xy' to define start and end points.

If only a starting coordinate is given, the direction defaults to the last element's direction unless specified by either:

    d       : direction ['up','down','left','right']
    theta   : angle (in degrees) to draw the element. Overrides 'd'.

Some elements define extra anchors. These are positions that can be used to position this element, or other elements connecting to it. For example, an opamp defines three anchor points: in1, in2, and out.

When placing the opamp, it can then be located with respect to the correct terminal. The following will place an opamp with in2 connected to the endpoint of the resistor:

d.add(e.RES, label='Rin')
op = d.add(e.OPAMP, anchor='in2')

Then, to place a resistor on the output

d.add(e.RES, xy=op.out, label='Ro')

All elements have at least three anchors: 'start', 'end', and 'center'.

Element orientation

An element can be reversed (for example a diode), or flipped vertically using the arguments:

    flip    : flip the element vertically (when theta=0)
    reverse : reverse a directional element (e.g. diode)


A label string can be added to the element using the 'label' argument (default position) or with 'toplabel', 'botlabel', 'lftlabel', or 'rgtlabel'. Labels can be added in multiple positions, for example labeling a component name with toplabel='R1' and value botlabel='100'. For math symbols, enclose the string in $$ to enable latex-style math mode, e.g.

label='$R_1 = 100 \Omega$'.

Label related arguments include:

    label, toplabel, botlabel, lftlabel, rgtlabel:
        Add a string label to the element.
    lblofst : offset between text label and element

A label can also be defined as a list of strings. In this case, the strings will be evenly spaced along the length of the element. This is useful for labeling polarities, for example


Labels can also be added to an element after it is added to the drawing using the element's add_label() method. This allows arbitrary positions and infinite number of labels.

D1 = d.add(e.DIODE, label='D1')
D1.add_label('1N4001', loc='bot')
D1.add_label('a', loc='lft')
D1.add_label('b', loc='rgt')

The add_label() method takes the following arguments:

    label: text label to add
    loc: location for the label ['top', 'bot', 'lft', 'rgt'].
    txtofst: unit offset between element bounding box and label.
    align: alignment tuple for (horizontal, vertical):
           (['center', 'left', 'right'], ['center', 'top', 'bottom'])

Other element arguments include:

    move_cur : move the cursor after drawing. Default=True.
    color    : matplotlib color. e.g. 'red', '#34a4e6', (.8,0,.8)
    ls       : [':', '--', '-'] linestyle (same as matplotlib).

Drawing parameters

When setting up a new schematic drawing, a few parameters are available to set the overall drawing size. Arguments to Drawing() are:

    unit : Full length of a resistor element in matplotlib plot units.
           Inner portion of resistor is length 1. Default=3.
    inches_per_unit : inches per unit to scale drawing. Default=.5
    txtofst  : Default distance from element to text label. Default=0.1.
    fontsize : Default font size. Default=16.
    font     : matplotlib font-family. Default='sans-serif'.

Drawing state

The drawing state (current position and direction), can be saved and recalled using:

d.push()   # Save the drawing state
... Do some things that change the drawing state
d.pop()    # Recall the drawing state

Saving an image

The final image can be saved to a file using The filename extension determines the type of file to be saved. Any matplotlib-compatible file format can be used. Saving in a vector-based format, such as eps, pdf, or svg, is recommended for best quality.'testimage.eps')


A number of common elements are predefined in the SchemDraw.elements module.

2-Terminal Elements

Sources and meters


Grounds don't move the current drawing position.



Potentiometer is defined with one additional anchor for the 'tap'.



An opamp defines three anchors, in1, in2, and out.


Transistors also define three anchors as shown below.

Types of transistors are shown below:

Connecting elements

Elements are connected with lines and dot elements. Dots don't change the current drawing position.

Label element

The LABEL element can be used to add a label anywhere. The GAP_LABEL is like an "invisible" element, which can be used for marking the voltage between output terminals.


Transformer elements can be generated using the transformer() function. Parameters are:

    t1    : Number of turns on primary (left) side
    t2    : Number of turns on secondary (right) side
    core  : Draw the core (parallel lines) [default=False]
    ltaps : Dictionary of name:position pairs, position is the turn number from the top to tap
            Each tap defines an anchor point but does not draw anything.
    rtaps : Same as ltaps, on right side
    loop  : Use spiral/cycloid (loopy) style [default=False]

Two transformers with cycloid=False (left) cycloid=True (right). Anchor names are p1, p2 for the primary (left) side, and s1, s2 for the secondary (right) side.

Example usage with taps:

xf = d.add(e.transformer(t1=4, t2=8, rtaps={'B':3}, loop=False))
d.add(e.LINE, xy=xf.s1, l=d.unit/4)
d.add(e.LINE, xy=xf.s2, l=d.unit/4)
d.add(e.LINE, xy=xf.p1, l=d.unit/4, d='left')
d.add(e.LINE, xy=xf.p2, l=d.unit/4, d='left')
d.add(e.LINE, xy=xf.B, l=d.unit/2, d='right', rgtlabel='B')

Current Arrow

To label the current through an element, the ARROWI element is defined. Typically, it can be added alongside an existing element using the drawing's labelI() method, which takes the arguments:

    elm       : element to add arrow to
    label     : string or list of strings to space along arrow
    arrowofst : distance from element to arrow
    arrowlen  : length of arrow in drawing units
    reverse   : [True,False] reverse the arrow, opposite to elm.theta
    top       : [True,False] draw on top (or bottom) of element

For example:

R1 = d.add(e.RES)
d.labelI(R1, '10mA')

Loop currents

Loop currents can be added using the drawing's loopI() method:

    elm_list : boundary elements in order of top, right, bot, left
    label    : text label for center of loop
    d        : arrow direction 'cw' or 'ccw'. Default='cw'
    theta1   : start angle of arrow arc (degrees). Default=35
    theta2   : end angle of arrow arc (degrees). Default=-35

For example:

R1 = d.add(e.RES)
C1 = d.add(e.CAP, d='down')
D1 = d.add(e.DIODE_F, d='left')
L1 = d.add(e.INDUCTOR, d='up')
d.loopI([R1, C1, D1, L1], d='cw', label='$I_1$')

Logic Gates

Logic gates can be drawn by including the logic module:

import SchemDraw.logic as l

Typical AND, OR, NAND, NOR, XOR, XNOR, and NOT gates with 2, 3, or 4 inputs are predefined. Anchors are defined as 'in1', 'in2', etc for each input, and 'out' for the output.

Two functions are available to generate more complicated, multi-input gates. The andgate() method is defined:

    inputs    : number of inputs to gate.
    nand      : invert bubble on output
    inputnots : list of input numbers (starting at 1) with invert bubble

and the orgate() method:

    inputs    : number of inputs to gate.
    nor       : invert bubble on output
    xor       : exclusive-or
    inputnots : list of input numbers (starting at 1) with invert bubble

As an example, the following line generates a 3-input NAND gate with one input pre-inverted.

l.andgate(inputs=3, nand=True, inputnots=[1])

Black-box elements

Elements drawn as boxes, such as integrated circuits, can be generated using the elements.blackbox() function. An arbitrary number of inputs/outputs can be drawn to each side of the box. The inputs can be evenly spaced (default) or arbitrarily placed anywhere along each edge. The function takes the arguments:

    w, h : width and height of rectangle
    mainlabel : main box label
    leadlen   : length of lead extensions
    lblsize   : default font size of labels
    lblofst   : default label offset
    plblsize  : default pin label size
    plblofst  : default pin label offset
    hslant    : angle (degrees) to slant horizontal sides
    vslant    : angle (degrees) to slant vertical sides
    linputs, rinputs, tinputs, binputs: dictionary input definition for each side
    of the box. Default to no inputs. Dictionary keys:
        labels: list of string labels for each input. drawn inside the box. default is blank.
        plabels: list of pin label strings. drawn outside the box. Default is blank.
        spacing: distance between pins. Defaults to evenly spaced pins along side.
        loc: list of pin locations (0 to 1), along side. Defaults to evenly spaced pins. Overrides spacing argument.
        leads: True/False, draw leads coming out of box. Default=True.
        lblofst: float offset for labels. Default=.15
        plblofst: float offset for pin labels. Default=.1
        lblsize: font size for labels. Default=16
        plblsize: font size for pin labels. Default=12

Anchors to each input will be automatically generated using the 'labels' keyword for each side of the box if provided. Duplicate input names will be appended with a number. If not provided, the anchors will be named 'inL1', 'inL2'... for the left side, for the right side 'inR1', inR2', etc.

For example, a full-adder box can be made with inputs on all sides:

tinputs = {'cnt':2, 'labels':['b','a']}
rinputs = {'cnt':1, 'labels':['$c_{in}$']}
linputs = {'cnt':1, 'labels':['$c_{out}$']}
binputs = {'cnt':1, 'labels':['$s$']}
B = e.blackbox(d.unit, d.unit, linputs=linputs, binputs=binputs, tinputs=tinputs, rinputs=rinputs)

See the [555-timer circuit] example below for a more complete usage of blackbox().


Multiplexers and demultiplexers may be drawn using the elements.mux() method which creates a blackbox element. Arguments include:

inputs: list of strings
    Name of each input
outputs: list of strings
    Name of each output
ctrls: list of strings
    Name of control signals (bottom)
topctrls: list of strings
    Name of control signals on top side
demux: boolean
    Draw as demultiplexer
h: float, optional
    Height of multiplexer
w: float, optional
    Width of multiplexer
pinspacing: float
    distance between pins on input/output side
ctrlspacing: float
    distance between pins on control side
slope: float
    angle (degrees) to slope top and bottom
    keyword arguments to pass to blackbox method


m1 = e.mux(inputs=['A','B','C','D'], outputs=['X'], ctrls=['0','1'])


Following are examples of more complicated circuit diagrams. Most are useless circuits made for torturing ECE201 students. Further examples can be found in the ipynb ipython notebooks the docs folder.

Example 1

This example demonstrates use of push() and pop() and using 'tox' and 'toy' keywords.

d = schem.Drawing(unit=2)  # unit=2 makes elements with shorter than normal leads
R1 = d.add(e.RES, d='down', label='20$\Omega$')
V1 = d.add(e.SOURCE_V, d='down', reverse=True, label='120V')
d.add(e.LINE, d='right', l=3)
d.add(e.LINE, d='right', l=3)
d.add(e.SOURCE_V, d='down', label='60V', reverse=True)
d.add(e.RES, label='5$\Omega$')
d.add(e.LINE, d='right', l=3)
d.add(e.SOURCE_I, d='up', label='36A')
d.add(e.RES, label='10$\Omega$')
d.add(e.LINE, d='left', l=3, move_cur=False)
d.add(e.LINE, d='right', l=3)
R6 = d.add(e.RES, d='down', toy=V1.start, label='6$\Omega$')
d.add(e.LINE, d='left', l=3, move_cur=False)
d.add(e.RES, d='right', xy=R6.start, label='1.6$\Omega$')
d.add(e.DOT, label='a')
d.add(e.LINE, d='right', xy=R6.end)
d.add(e.DOT, label='b')

Capacitor discharging

Shows how to connect to a switch element anchors.

d = schem.Drawing()
V1 = d.add(e.SOURCE_V, label='5V')
d.add(e.LINE, d='right', l=d.unit*.75)
S1 = d.add(e.SWITCH_SPDT2_CLOSE, d='up', anchor='b', rgtlabel='$t=0$')
d.add(e.LINE, d='right', xy=S1.c,  l=d.unit*.75)
d.add(e.RES, d='down', label='$100\Omega$', botlabel=['+','$v_o$','-'])
d.add(e.LINE, to=V1.start)
d.add(e.CAP, xy=S1.a, d='down', toy=V1.start, label='1$\mu$F')

Inverting Opamp

Shows how to connect to an opamp

d = schem.Drawing(inches_per_unit=.5)
op = d.add(e.OPAMP)
d.add(e.LINE, d='left', xy=op.in2, l=d.unit/4)
d.add(e.LINE, d='down', l=d.unit/5)
d.add(e.LINE, d='left', xy=op.in1, l=d.unit/6)
Rin = d.add(e.RES, d='left', xy=op.in1-[d.unit/5,0], botlabel='$R_{in}$', lftlabel='$v_{in}$')
d.add(e.LINE, d='up', l=d.unit/2)
Rf = d.add(e.RES,  d='right', l=d.unit*1, label='$R_f$')
d.add(e.LINE, d='down', toy=op.out)
d.add(e.LINE, d='left', tox=op.out)
d.add(e.LINE, d='right', l=d.unit/4, rgtlabel='$v_{o}$')

Capacitor network

Another good problem to torture ECE201 students. Shows how to place an element using 'endpts' to cross a diagonal.

d = schem.Drawing()
A  = d.add(e.DOT, label='a')
C1 = d.add(e.CAP, label='8nF')
C2 = d.add(e.CAP, label='18nF')
C3 = d.add(e.CAP, botlabel='8nF', d='down')
C4 = d.add(e.CAP, botlabel='32nF', d='left')
C5 = d.add(e.CAP, botlabel='40nF')
B  = d.add(e.DOT, label='b')
C6 = d.add(e.CAP, label='2.8nF', endpts=[C1.end,C5.start])
C7 = d.add(e.CAP, endpts=[C2.end,C5.start])
C7.add_label('5.6nF', loc='center', ofst=[-.3,-.1], align=('right','bottom'))

S-R Latch

Demonstrates using transistors

d = schem.Drawing()
Q1 = d.add(e.BJT_NPN_C, reverse=True, lftlabel='Q1')
Q2 = d.add(e.BJT_NPN_C, xy=[d.unit*2,0], label='Q2')
d.add(e.LINE, xy=Q1.collector, d='up', l=d.unit/2)

R1 = d.add(e.RES, d='up', label='R1', move_cur=False)
d.add(e.DOT, lftlabel='V1')
d.add(e.RES, d='right', botlabel='R3', l=d.unit*.75)
d.add(e.LINE, d='up', l=d.unit/8)
d.add(e.DOT_OPEN, label='Set')
d.add(e.LINE, to=Q2.base)

d.add(e.LINE, xy=Q2.collector, d='up', l=d.unit/2)
d.add(e.DOT, rgtlabel='V2')
R2 = d.add(e.RES, d='up', botlabel='R2', move_cur=False)
d.add(e.RES, d='left', botlabel='R4', l=d.unit*.75)
d.add(e.LINE, d='up', l=d.unit/8)
d.add(e.DOT_OPEN, label='Reset')
d.add(e.LINE, to=Q1.base)

d.add(e.LINE, xy=Q1.emitter, d='down', l=d.unit/4)
BOT = d.add(e.LINE, d='right', tox=Q2.emitter)
d.add(e.LINE, to=Q2.emitter)

TOP = d.add(e.LINE, endpts=[R1.end,R2.end])
d.add(e.LINE,, d='up', l=d.unit/8, rgtlabel='Vcc')


Demonstrate using logic gates

d = schem.Drawing(unit=.5)
S = d.add(l.XOR2, rgtlabel='$S$')
A = d.add(e.DOT, xy=S.in1)
d.add(e.LINE, d='left', l=d.unit*2, lftlabel='$A$')
d.add(e.LINE, d='left', xy=S.in2)
B = d.add(e.DOT)
d.add(e.LINE, d='left', lftlabel='$B$')
d.add(e.LINE, d='down', xy=A.start, l=d.unit*3)
C = d.add(l.AND2, d='right', anchor='in1', rgtlabel='$C$')
d.add(e.LINE, d='down', xy=B.start, toy=C.in2)
d.add(e.LINE, to=C.in2)

JK Flip-flop

A slightly more complicated logic gate example. Note the use of the LaTeX command \overline{Q} in the label to draw a bar over the output label.

d = schem.Drawing()
# Two front gates (SR latch)
G1 = d.add(l.NAND2, anchor='in1')
d.add(e.LINE, l=d.unit/6)
Q1 = d.add(e.DOT)
d.add(e.LINE, l=d.unit/6)
Q2 = d.add(e.DOT)
d.add(e.LINE, l=d.unit/3, rgtlabel='$Q$')
G2 = d.add(l.NAND2, anchor='in1', xy=[G1.in1[0],G1.in1[1]-2.5])
d.add(e.LINE, l=d.unit/6)
Qb = d.add(e.DOT)
d.add(e.LINE, l=d.unit/3)
Qb2 = d.add(e.DOT)
d.add(e.LINE, l=d.unit/6, rgtlabel='$\overline{Q}$')
S1 = d.add(e.LINE, xy=G2.in1, d='up', l=d.unit/6)
d.add(e.LINE, d='down', xy=Q1.start, l=d.unit/6)
d.add(e.LINE, to=S1.end)
R1 = d.add(e.LINE, xy=G1.in2, d='down', l=d.unit/6)
d.add(e.LINE, d='up', xy=Qb.start, l=d.unit/6)
d.add(e.LINE, to=R1.end)

# Two back gates
d.add(e.LINE, xy=G1.in1, d='left', l=d.unit/6)
J = d.add(l.NAND3, anchor='out', reverse=True)
d.add(e.LINE, xy=J.in3, d='up', l=d.unit/6)
d.add(e.LINE, d='right', tox=Qb2.start)
d.add(e.LINE, d='down', toy=Qb2.start)
d.add(e.LINE, d='left', xy=J.in2, l=d.unit/4, lftlabel='$J$')
d.add(e.LINE, xy=G2.in2, d='left', l=d.unit/6)
K = d.add(l.NAND3, anchor='out', reverse=True)
d.add(e.LINE, xy=K.in1, d='down', l=d.unit/6)
d.add(e.LINE, d='right', tox=Q2.start)
d.add(e.LINE, d='up', toy=Q2.start)
d.add(e.LINE, d='left', xy=K.in2, l=d.unit/4, lftlabel='$K$')
C = d.add(e.LINE, d='down', xy=J.in1, toy=K.in3)
d.add(e.LINE, d='left',, l=d.unit/4, lftlabel='$CLK$')

555-timer circuit

This example shows use of the blackbox() function to draw a 555-timer integrated circuit.

d = schem.Drawing()
left = {'cnt':3,
right = {'cnt':2,
top = {'cnt':2,
bot = {'cnt':1,

IC555 = e.blackbox(d.unit*1.5, d.unit*2.25, 
                   linputs=left, rinputs=right, tinputs=top, binputs=bot,
                   leadlen=1, mainlabel='555')
T = d.add(IC555)
BOT = d.add(e.GND, xy=T.GND)  # Note: Anchors named same as pin labels
d.add(e.RES, endpts=[T.DIS, T.THR], label='Rb')
d.add(e.RES, d='up', xy=T.DIS, label='Ra', rgtlabel='+Vcc')
d.add(e.LINE, endpts=[T.THR, T.TRG])
d.add(e.CAP, xy=T.TRG, d='down', toy=BOT.start, label='C', l=d.unit/2)
d.add(e.LINE, d='right', tox=BOT.start)
d.add(e.CAP, d='down', xy=T.CTL, toy=BOT.start, botlabel='.01$\mu$F')
d.add(e.DOT, xy=T.DIS)
d.add(e.DOT, xy=T.THR)
d.add(e.DOT, xy=T.TRG)
d.add(e.LINE, endpts=[T.RST,T.Vcc])
d.add(e.LINE, d='up', l=d.unit/4, rgtlabel='+Vcc')
d.add(e.RES, xy=T.OUT, d='right', label='330')
d.add(e.LED, flip=True, d='down', toy=BOT.start)
d.add(e.LINE, d='left', tox=BOT.start)

Defining New Elements

New elements can be defined by creating a python dictionary describing how the element should be drawn. An element can be made up of paths and/or shapes. A path is simply a list of xy coordinates which will be plotted with matplotlib. A shape is a predefined matplotlib patch, such as a circle (defined by center and radius).

Coordinates are all defined in element cooridnates, where the element begins at [0,0] and is drawn from left to right. The drawing engine will then rotate and translate the element to its final position. A standard resistor is 1 drawing unit long, and with default lead extension will become 3 units long.

Possible dictionary keys:

    name:  A name string for the element. Currently only used for testing.
    paths: A list of each path line in the element. For example, a capacitor
           has two paths, one for each capacitor "plate". On 2-terminal
           elements, the leads will be automatically extended away from the
           first and last points of the first path, and don't need to
           be included in the path.
    base:  Dictionary defining a base element. For example, the variable
           resistor has a base of resistor, then adds an additional path.
    shapes: A list of shape dictionaries.
            'shape' key can be [ 'circle', 'poly', 'arc', 'arrow' ]
            Other keys depend on the shape as follows.
                'center': xy center coordinate
                'radius': radius of circle
                'fill'  : [True, False] fill the circle
                'fillcolor' : color for fill
                'xy' : List of xy coordinates defining polygon
                'closed': [True, False] Close the polygon
                'fill'  : [True, False] fill the polygon
                'fillcolor' : color for fill
                'center' : Center coordinate of arc
                'width', 'height': width and height of arc
                'theta1' : Starting angle (degrees)
                'theta2' : Ending angle (degrees)
                'angle'  : Rotation angle of entire arc
                'arrow'  : ['cw', 'ccw'] Add an arrowhead, clockwise or counterclockwise
                'start'  : start of arrow
                'end'    : end of arrow
                'headwidth', 'headlength': width and length of arrowhead
    theta: Default angle (in degrees) for the element. Overrides the current
           drawing angle.
    anchors: A dictionary defining named positions within the element. For
             example, the NFET element has a 'source', 'gate', and 'drain'
             anchor. Each anchor will become an attribute of the element class
             which can then be used for connecting other elements.
    extend: [True, False] Extend the leads to fill the full element length.
    move_cur: [True, False] Move the drawing cursor location after drawing.
    color: A matplotlib-compatible color for the element. Examples include
           'red', 'blue', '#34ac92'
    drop: Final location to leave drawing cursor.
    lblloc: ['top', 'bot', 'lft', 'rgt'] default location for text label.
            Defaults to 'top'.
    lblofst: Default distance between element and text label.
    labels: List of (label, pos) tuples defining text labels to always draw
            in the element.
    ls    : [':', '--', '-'] linestyle (same as matplotlib). Only applies to paths.

Using the 'base' key, a new element can be defined as an extension of some base element. As an example, let's define a sinusoidal voltage source (the SOURCE_SIN element). It can be based on a SOURCE element, with the addition of a path to draw a sine wave inside the circle. A path can be created using standard numpy processing, so first we'll make a sine wave path. Since the circle is centered at [.5,0], center the sine wave there too:

sin_y = np.linspace(.25,.75,num=25) - 0.5
sin_x = .2 * np.sin((sin_y-.25)*np.pi*2/.5) + 0.5
sin_path = np.transpose(np.vstack((sin_x,sin_y)))

Then define the element dictionary. It's just a SOURCE element with an additional path:

    'name'  : 'SOURCE_SIN',
    'base'  : SOURCE,
    'paths' : [sin_path]

XKCD Mode!

For something fun, you can turn on Matplotlib's XKCD mode to get "hand-drawn" schematics. (May not work in all image formats or cases...)

import matplotlib.pyplot as plt
d = schem.Drawing()